apriori算法是最基本的发现频繁项集的算法,它的名字也体现了它的思想——先验,采用逐层搜索迭代的方法,挖掘任何可能的项集,k项集用于挖掘k+1项集。
先验性质
频繁项集的所有非空子集也一定是频繁的
该性质体现了项集挖掘中的反单调性,如果k项集不是频繁的,那么k+1项集一定也不是。基于这一点,算法的基本思想为:
step 1:连接
为了搜索k项集,将k-1项集自连接产生候选的k项集,称为候选集。
为了有效的实现连接,首先对每一项进行排序。其次,若满足连接的条件,则进行连接。
连接的条件,前k-2项相同,k-1项不同
step 2:剪枝
k项集的每一个k-1项子集都存在与k-1项集,并且支持度满足最小支持度阀值。
伪代码:
C<k>:candidata itemset of size k L<k>:frequent itemset of size k L<1>=frequent items for(k=1;L<k>!=null;k++) C<k+1>=candidates generated from L<k> for transaction t in dataset increment the count of all candidates in C<k+1> that are contained in t L<k+1>=candidates in C<k+1> with support>=min_support returnJava代码实现方式:
抽象了一个项集实体类,并实现是否可以合并的方法,这个方法最初是使用TreeSet.headSet来实现的,但是在测试时发现性能瓶颈都产生在这个方法上,并造成OOM,很是费解,待研究清楚后总结一下。
/** * */package org.waitingfortime.datamining.association;import java.io.BufferedReader;import java.io.File;import java.io.FileNotFoundException;import java.io.FileOutputStream;import java.io.FileReader;import java.io.IOException;import java.io.PrintStream;import java.util.ArrayList;import java.util.HashMap;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.TreeSet;/** * @author mazhiyuan * */public class Apriori { private int minNum;// 最小支持数 private List使用mushroom数据集,整个运行时间只有大概6s,性能还算满意。> records; private String output; private List
> result = new ArrayList
>(); public Apriori(double minDegree, String input, String output) { this.output = output; init(input); if (records.size() == 0) { System.err.println("不符合计算条件。退出!"); System.exit(1); } minNum = (int) (minDegree * records.size()); } private void init(String path) { // TODO Auto-generated method stub records = new ArrayList >(); try { BufferedReader br = new BufferedReader(new FileReader( new File(path))); String line = null; Set record; while ((line = br.readLine()) != null) { if (!"".equals(line.trim())) { record = new TreeSet (); String[] items = line.split(" "); for (String item : items) { record.add(Integer.valueOf(item)); } records.add(record); } } br.close(); } catch (IOException e) { System.err.println("读取事务文件失败。"); } } private List first() { // TODO Auto-generated method stub List first = new ArrayList (); Map _first = new HashMap (); for (Set si : records) for (Integer i : si) { if (_first.get(i) == null) _first.put(i, 1); else _first.put(i, _first.get(i) + 1); } for (Integer i : _first.keySet()) if (_first.get(i) >= minNum) first.add(new ItemSet(i, _first.get(i))); return first; } private void loop(List items) { // TODO Auto-generated method stub List copy = new ArrayList (items); List res = new ArrayList (); int size = items.size(); // 连接 for (int i = 0; i < size; i++) for (int j = i + 1; j < size; j++) if (copy.get(i).isMerge(copy.get(j))) { ItemSet is = new ItemSet(copy.get(i)); is.merge(copy.get(j).item.last()); res.add(is); } // 剪枝 pruning(copy, res); if (res.size() != 0) { result.add(res); loop(res); } } private void pruning(List pre, List res) { // TODO Auto-generated method stub // step 1 k项集的子集属于k-1项集 Iterator ir = res.iterator(); while (ir.hasNext()) { // 获取所有k-1项子集 ItemSet now = ir.next(); List
> ss = subSet(now); // 判断是否在pre集中 boolean flag = false; for (List li : ss) { if (flag) break; for (ItemSet pis : pre) { if (pis.item.containsAll(li)) { flag = false; break; } flag = true; } } if (flag) { ir.remove(); continue; } // step 2 支持度 int i = 0; for (Set sr : records) { if (sr.containsAll(now.item)) i++; now.value = i; } if (now.value < minNum) ir.remove(); } } private List
> subSet(ItemSet is) { // TODO Auto-generated method stub List li = new ArrayList (is.item); List
> res = new ArrayList
>(); for (int i = 0, j = li.size(); i < j; i++) { List _li = new ArrayList (li); _li.remove(i); res.add(_li); } return res; } private void output() throws FileNotFoundException { if (result.size() == 0) { System.err.println("无结果集。退出!"); return; } FileOutputStream out = new FileOutputStream(output); PrintStream ps = new PrintStream(out); for (List li : result) { ps.println("=============频繁"+li.get(0).item.size()+"项集============="); for (ItemSet is : li) ps.println(is.item + " : " + is.value); ps.println("====================================="); } } /** * @param args * @throws FileNotFoundException */ public static void main(String[] args) throws FileNotFoundException { // TODO Auto-generated method stub long begin = System.currentTimeMillis(); Apriori apriori = new Apriori(0.25, "/home/mazhiyuan/code/mushroom.dat", "/home/mazhiyuan/code/mout.data"); // apriori.first();//频繁1项集 apriori.loop(apriori.first()); apriori.output(); System.out.println((System.currentTimeMillis()) - begin); }}class ItemSet { TreeSet item; int value; ItemSet(ItemSet is) { this.item = new TreeSet (is.item); } ItemSet() { item = new TreeSet (); } ItemSet(int i, int v) { this(); merge(i); setValue(v); } void setValue(int i) { this.value = i; } void merge(int i) { item.add(i); } boolean isMerge(ItemSet other) { if (other == null || other.item.size() != item.size()) return false; // 前k-1项相同,最后一项不同,满足连接条件 /* * Iterator i = item.headSet(item.last()).iterator(); * Iterator o = * other.item.headSet(other.item.last()).iterator(); while (i.hasNext() && * o.hasNext()) if (i.next() != o.next()) return false; */ Iterator i = item.iterator(); Iterator o = other.item.iterator(); int n = item.size(); while (i.hasNext() && o.hasNext() && --n > 0) if (i.next() != o.next()) return false; return !(item.last() == other.item.last()); }}
这个代码只是计算了频繁项集,还没有计算关联规则和置信度,稍后补上。
=========补充了关联规则的生成======== 比想象的要麻烦一点
关联规则可以是双向的,confidence(A-->B)=P(A|B)=support(A&B)/support(A)
所以在计算k项集的关联规则时,其分母都是k项集的支持度,分子为k-1项集的支持度,以及对应1项集的支持度
/** * */package org.waitingfortime.datamining.association;import java.io.BufferedReader;import java.io.File;import java.io.FileNotFoundException;import java.io.FileOutputStream;import java.io.FileReader;import java.io.IOException;import java.io.PrintStream;import java.util.ArrayList;import java.util.HashMap;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.TreeSet;/** * @author mazhiyuan * */public class Apriori { private int minNum;// 最小支持数 private double minCon;// 最小置信度 private List> records;// 原始数据 private String output;// 输出路径 private List
> result = new ArrayList
>();// 频繁项集结果 private List fth;// 频繁1项集 public Apriori(double minDegree, double minCon, String input, String output) { this.output = output; this.minCon = minCon; init(input); if (records.size() == 0) { System.err.println("不符合计算条件。退出!"); System.exit(1); } minNum = (int) (minDegree * records.size()); } private void init(String path) { // TODO Auto-generated method stub records = new ArrayList >(); try { BufferedReader br = new BufferedReader(new FileReader( new File(path))); String line = null; Set record; while ((line = br.readLine()) != null) { if (!"".equals(line.trim())) { record = new TreeSet (); String[] items = line.split(" "); for (String item : items) { record.add(Integer.valueOf(item)); } records.add(record); } } br.close(); } catch (IOException e) { System.err.println("读取事务文件失败。"); } } private void first() { // TODO Auto-generated method stub fth = new ArrayList (); Map first = new HashMap (); for (Set si : records) for (Integer i : si) { if (first.get(i) == null) first.put(i, 1); else first.put(i, first.get(i) + 1); } for (Integer i : first.keySet()) if (first.get(i) >= minNum) fth.add(new ItemSet(i, first.get(i))); } private void loop(List items) { // TODO Auto-generated method stub List copy = new ArrayList (items); List res = new ArrayList (); int size = items.size(); // 连接 for (int i = 0; i < size; i++) for (int j = i + 1; j < size; j++) if (copy.get(i).isMerge(copy.get(j))) { ItemSet is = new ItemSet(copy.get(i)); is.merge(copy.get(j).item.last()); res.add(is); } // 剪枝 pruning(copy, res); if (res.size() != 0) { result.add(res); loop(res); } } private void pruning(List pre, List res) { // TODO Auto-generated method stub // step 1 k项集的子集属于k-1项集 Iterator ir = res.iterator(); while (ir.hasNext()) { // 获取所有k-1项子集 ItemSet now = ir.next(); Map > ss = subSet(now); // 判断是否在pre集中 boolean flag = false; for (List li : ss.values()) { if (flag) break; for (ItemSet pis : pre) { if (pis.item.containsAll(li)) { flag = false; break; } flag = true; } } if (flag) { ir.remove(); continue; } // step 2 支持度 int i = 0; for (Set sr : records) { if (sr.containsAll(now.item)) i++; now.support = i; } if (now.support < minNum) { ir.remove(); continue; } // 产生关联规则 double deno = now.support; for (Map.Entry > me : ss.entrySet()) { ItemCon ic = new ItemCon(me.getKey(), me.getValue()); int nume = 0; for (ItemSet f : fth) if (f.item.contains(me.getKey())) { nume = f.support; break; } if (deno / nume > minCon) { now.calcon(ic); ic.setC1(deno / nume); } for (ItemSet pis : pre) if (pis.item.size() == me.getValue().size() && pis.item.containsAll(me.getValue())) { nume = pis.support; break; } if (deno / nume > minCon) ic.setC2(deno / nume); } } } private Map > subSet(ItemSet is) { // TODO Auto-generated method stub List li = new ArrayList (is.item); Map > res = new HashMap >(); for (int i = 0, j = li.size(); i < j; i++) { List _li = new ArrayList (li); _li.remove(i); res.put(li.get(i), _li); } return res; } private void output() throws FileNotFoundException { if (result.size() == 0) { System.err.println("无结果集。退出!"); return; } FileOutputStream out = new FileOutputStream(output); PrintStream ps = new PrintStream(out); for (List li : result) { ps.println("=============频繁" + li.get(0).item.size() + "项集============="); for (ItemSet is : li) { ps.println(is.item + " : " + is.support); ps.println(); if (is.ics.size() != 0) { ps.println("******关联规则******"); for (ItemCon ic : is.ics) { ps.println(ic.i + " ---> " + ic.li + " con: " + ic.confidence1); if (ic.confidence2 > minCon) ps.println(ic.li + " ---> " + ic.i + " con: " + ic.confidence2); } ps.println("******************"); ps.println(); } } ps.println("====================================="); } ps.close(); } /** * @param args * @throws FileNotFoundException */ public static void main(String[] args) throws FileNotFoundException { // TODO Auto-generated method stub long begin = System.currentTimeMillis(); Apriori apriori = new Apriori(0.25, 0.5, "/home/mazhiyuan/code/mushroom.dat", "/home/mazhiyuan/code/mout.data"); // apriori.first();//频繁1项集 apriori.first(); apriori.loop(apriori.fth); apriori.output(); System.out.println("共耗时:" + ((System.currentTimeMillis()) - begin) + "ms"); }}class ItemSet { TreeSet item; int support; List ics = new ArrayList (); // 关联规则结果 ItemSet(ItemSet is) { this.item = new TreeSet (is.item); } ItemSet() { item = new TreeSet (); } ItemSet(int i, int v) { this(); merge(i); setValue(v); } void setValue(int i) { this.support = i; } void merge(int i) { item.add(i); } void calcon(ItemCon ic) { ics.add(ic); } boolean isMerge(ItemSet other) { if (other == null || other.item.size() != item.size()) return false; // 前k-1项相同,最后一项不同,满足连接条件 /* * Iterator i = item.headSet(item.last()).iterator(); * Iterator o = * other.item.headSet(other.item.last()).iterator(); while (i.hasNext() * && o.hasNext()) if (i.next() != o.next()) return false; */ Iterator i = item.iterator(); Iterator o = other.item.iterator(); int n = item.size(); while (i.hasNext() && o.hasNext() && --n > 0) if (i.next() != o.next()) return false; return !(item.last() == other.item.last()); }}class ItemCon { Integer i; List li; double confidence1; double confidence2; ItemCon(Integer i, List li) { this.i = i; this.li = li; } void setC1(double c1) { this.confidence1 = c1; } void setC2(double c2) { this.confidence2 = c2; }}
Apriori算法本身的性能就是一大问题,产生太多的候选集,FP-TREE算法规避了这一问题,使得频繁项集的挖掘性能提高了至少一个量级,下一篇重点介绍这个算法。